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Abstract We consider an optidly excited semiconductor as a coherent system of interacting 
excitons and phmns. Within the boson formalism and secular approximation the analytical 
expressions for the exciton quadrature variances are rigorously derived. The analysis of these 
variances over the relevant parameter space shows that initially coherent excitons can evolve into 
squeezed states in a finite-size senkonductor, which must possess both linear and non-linear 
interactions. 

1. Introduction 

Squeezed states of light were theoretically proposed in 1970 [l]. Their first experimental 
observations in 1985 (see selected papers and reviews in [ZJ) ma& them a major subject in 
quantum optics, which has been unceasingly studied from both fundamental and practical 
points of view. This is due to the fact that in a squeezed state the uncertainty of one 
of the two quadrature components of the field is reduced below the coherence-state value 
[3], promising possibilities for precision measurements beyond the shot-noise limit. These 
open potential applications e.g. in interferometry, ultrasensitive laser spectroscopy, optical 
communication, detection of gravitational waves and so on. Apart from well known 
advantages in quantum optics, the concept of squeezed states possesses the common 
character that its analogies must also be found in other areas of physics such as atomic 
physics, quantum-field theory and condensed-matter physics. Squeezed states can therefore 
be produced not only for light but also for other kinds of quasiparticle existing in a material 
medium. Indeed, these have recently been considered for solitons [ M I ,  phonons [7,8], 
polaritons [9-111, excitons [12,13], biexcitons [14], etc. In [XI it was confirmed that the 
squeezed state of phonons gives a lower ground-state energy of the whole superconducting 
system than do the coherent and the displaced states. Polantons as two-mode intrinsically 
squeezed states were studied in [9], where the experimental possibilities were also discussed 
for detecting the squeezed polariton structure. In [lo] and [ l l ]  polariton squeezing in a 
small-volume crystal was shown to occur in both bunching and antibunching situations. 
[12] showed that the exciton in a photon-exciton system without non-linearities could 
periodically appear in a squeezed state if and only if the initial state of the system possesses 
a ceaain degree of squeezing. However, when non-hear interactions, for example, the 
exciton-exciton one, are included, squeezed excitons were demonstrated to be possible to 
generate by coherent light [13]: the system does not need to possess any initial degree 
of squeezing. Biexciton squeezing was also investigated in a photon-exciton system 
additionally pumped by a coherent light h e m  of finite intensity and of frequency resonant 

i On leave of absence from the Imtilute of Theoret~cal physics, PO Box 429 Boho, m m  10000, Vietnam. 
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with the exciton-biexciton transition 1141. In the present paper, we develop further the 
topic of [12] and [13], taking into account an additional kind of non-lin&ty that can 
also cause exciton squeezing, and with more detailed examination of the dependence of 
exciton squeezing on all the relevant parameters in real semiconductors. The additional 
non-linearity just mentioned is the collective response of the many-exciton system to the 
light. Such a non-linearity is of the same order of magnitude as that of the exciton-exciton 
interaction in bulk CdS and GaAs, and furthermore, it proves to be of more significance in 
low-dimensional samples, e.g., in quantum wells and quantum dots. Its consideration from 
the very onset is thus necessary and will be done here. Furthermore, it is worth noting that 
the formulae for the exciton quadrature variances to be derived in this paper are analytically 
exact and much more compact than those reported in our previous work [13]. 

We organise our paper as follows. Section 2 deals with the model Hamiltonian, which 
is constructed within a boson formalism. This Hamiltonian is then applied in section 3 
to derive the exciton quadrature variances. Section 4 analyses the time evolution of the 
variances over the parameter space. Finally, some relevant discussion is given in section 5. 

We shall use the units with both the Planck constant i'z and the velocity c of light in 
vacuum equal to unity. 

2. Model Hamiltonian 

Consider an optically excited twosimpledirect-band semiconductor, which can be modelled 
as a photon-electron-hole system: the photon creates or destroys the electron-hole pair, 
while the charged carriers interact with each other via Coulomb forces. Suppose the exciting 
light is spectroscopically close to the semiconductor band edge. Then the electron4ole pairs 
are likely to be formed in their bound slates. d l e d  excitons. Since an exciton comprises 
an electron and a hole, it is obviously boson-like but not an ideal boson. The non-boson 
character can be dealt with by taking account of the exact commutation relations between 
non-bosonic exciton operators. This is the non-boson approach to the many-exciton system 
[15-22]. There is another approach that makes the best use of the boson-like nature of 
excitons to introduce a hypothetical boson space in which the exciton exact kinetics as 
well as the residual interactions between difierent electron-hole pairs may be described 
as effective interactions along the bosonic excitons. The effective bosonic Hamiltonian 
has been derived from the original photon-electmn-hole one by several methods without 
[U-281 and with [29] spin effects taken into account. If interested in only one mode of 
photons with wave-vector ko and frequency w very close to the lowest n = 1s exciton 
energy level E = E I S ,  one can neglect (see e.g. [23] and [241) the existence of all the 
excitons with k # IC0 and n # 1s. Such an approximation is generally not well justified 
in real systems where scatterings of the (k = ko, n = 1s) excitons by phonons, impurities 
and also by each other will lead to the appearance of excitons with k # IEO and n # 1s. 
However, for the sake of simplicity, we shall in this paper confine ourselves only to a highly 
idealized situation in which we ignore all internal degrees of freedom connected with the 
relative electron-hole motion in an exciton as well as any scattering mechanisms that may 
destroy the coherency of the system. The idealized effective bosonic Hamiltonian for the 
exciton-photon system then has the following simple form: 

H = wctc + Ea+a + g(a'c + c+a) + (f/ V)a+a+aa + (l/V)(a+a+ac + c+u+aa) (1) 

where for brevity we have suppressed writing the indices and n = 1s. c (c+) and 
a (a+) stand for the annihilation (creation) operators of the single-mode photon and the 
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lowest-energy exciton. V is the sample volume. g and f describe the exciton-photon and 
exciton-exciton interactions. In the manyexciton system the exciton-photon transition is 
assised by the presence of an exciton other than that directly interacting with the photon. 
This exciton-assisted exciton-photon transition is described by terms proportional to f in (1) 
and represented by F e y ”  diagrams in figure 1, which can be interpreted as follows. A 
photon is absorbed generating an electron-hole pair, which does not form the final exciton 
state as in the usual exciton-photon transition. Instead, the electron (hole) of this pair is, due 
to the Pauli exclusion principle, exchanged with the electron (hole) of an exciton already 
existing in the system at the time of the photon absorption to form two final excitons as 
illustrated in figure 1 if it is read from left to right. Otherwise, if time is taken from right to 
left, one has the inverse process in which two excitons collectively generate a photon and an 
exciton. For three-dimensional samples the coupling constants g, f and I can analytically 
be expressed as 123,241 (for the two-dimensional case see, e.g., [281 and 1291) 

g = - E d -  f = E  3nRyr:  I = -7ngr: (2) 

with €0 the static dielectric constant of the semiconductor, A L ~  the exciton longitudinal- 
transverse splitting, Ry the exciton Rydberg and r, the exciton Bohr radius. For bulk 
GaAs (CdS) one has E = 1.495 (2.553) eV, ALT = 0.1 (1) meV, Ry = 5 (32.9) meV, 
60 = 12 (8) and r, = 100 (25.5) A, which give g 2: -30 (-101) meV, f 2: 
1.4 x (3.7 x lo-”) meV cm3. We 
see that f and I are of the same order of magnitude at least for bulk GaAs and CdS. In 
lower dimensions the expressions for f and f are very different from those given by (2) 
and they are difficult to calculate even numerically. Nevertheless, being of dipoldipole- 
like character, the exciton-xciton interaction is weakened in low dimensions because each 
exciton becomes ‘more neutral‘, i.e. less dipole like. On the other hand, the I interaction, 
by its nature, is less affected by ‘exciton neutralization’. Thus, in low dimensions the 1 
interaction is expected to be more important than the f one. In general, both interactions f 
and 1 give their own conmbutions, and they need to be considered simultaneously as they 

(1.5 x lo-’’) meV cm3 and I 2: 6.6 x 

were in establishing the Hamiltonian (1). 

3. Exciton quadrature variances 

Figure 1. Fey” diagrams coKespnding to ule 1 
interaction in the Hamiltonian (1). Full (broken) lines 
represent electron (hole) lines. A parallel pair of a 
full line and a broken one represenls an exciton. An 
exchange of two elect” Ololes) is described by a 
crossing of full (broken) lines. photons are shown as 
wavy lines No m w s  are indimEd each diagram can 
be read from bath sides. From leh (right) to right (lefi) 
they carrespond to photon absorption (emission). 

As in the problem of squeezed states of light, we define two exciton quadrature operators 
QY(t), with v = 1 or 2, as 

e.(t) = $(i)”-’[a+(t) - (-l)”u(t)], (3) 
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Obviously, 

[Qdt), Q,(Ol= - 1) (4) 

and 

([AQi(t)12)([AQz(t)12) 2 & (5) 

where AQ” = Q, - (8.) and the average (. . .) is understood in the quantum sense. 
([AQ.(t)]’) is referred to as exciton quadrature variances or briefly variances. Coherent 
states [3] are the on@ in which both the variances are equal to a. These are states of minimal 
uncertainty because the variance product in (5) is exactly equal to k. Squeezed states are 
the minimal-uncertainty states in which, however, one of the two variances is less than 4. 
If we use the normal-ordering symbol N, then in a squeezed state (N[AQv(t)]2) < 0 for 
U = 1 or 2. Since we shall assume the excitowphoton system to be in an initial coherent 
state whose amplitude is macroscopically large [3], it is convenient to deal with the normally 
ordered variances per unit volume, which are determined by 

qdt )  = (~ /V) (N[AQ, (~ ) I~ ) , .  (6) 

To analyse exciton squeezing we try to solve (1) for the time-varying exciton operators 
a(t) and a%) and then examine the behaviour of qv(t) to see whether or not they 
are negative during the course of time. For this purpose, we apply the Bogolubov 
transformations with real function coefficients [30,31], 

U” = 1/11 +gZ/(Q, - E)21”2 U, = gu./(Sz, - E )  (7) 

where 

to bring (1) into a formula expressed in terms of the two new polariton operators a, (a:) 
and 012 (a:): 
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To proceed further we now resort to the so-called secular approximation [32] which 
retains in the quadruple sum of (9) only the resonant terms proportional to F,,,,. The 
Hamiltonian can then be rewritten in the form 

where 

Fl1 = u:(fuI + Z u d  

F21 = u:uz(fu* + 21UZ) 

4 2  = ulu:(ful + ZUl) 

Fzz = u:(fu* + 21uz). 
(15) 

We note that (14) formally resembles a particular model Hamiltonian describing two photon 
coupled modes 1331. However, our Hamiltonian (14) is a concrete one with well specified 
parameters contained in Fv, through U". U, (see (7)) and f, I (see (I)). This enables us in 
the next section to apply our theoretical results to a real semiconductor. The Heisenberg 
equation of motion set up from (14) for the operator n,(r) = a:(t)a,(t) is 

d/dtn,(t) = i[H,n,(f)l = O  (16) 

for both v = 1 and 2, i.e. n,(t) = n,(O) = constant. Then the Heisenberg equations of 
motion for a:(t), 

are easy to solve yielding explicitly analytical solutions 

Substituting (18) into (12) gives the time dependence of the exciton operators, which we 
shall now use to evaluate the exciton quadrature variances q,(t) in (6). 

We anticipate that the exciton-photon system is initially in a coherent state denoted by 

(19) 1x9 2,; Y .  2,) = ~.~ZxJC(ZC)IX, 0; y. 0) 

&(&) = eXp(zbb+ - Ztb) 

where &(Zb) for any bosonic operator b is the displacement operator defined by 

(20) 

and Z,, Z, are arbitrary complex numbers characterizing the initial degree of coherence 
of the system. The average in (6) should be taken at time f 0. In our case that 
means (. . .) = ( y ,  Z&): x ,  Z,(f)l.. . Ix, Za(t): y ,  Zc(t))t, Nevertheless, as seen from (12) 
and (18). the behaviours of all of the operators concerned are determined only by their 
behaviours at the initial time t = 0. We can thus write 

(. . .) = ( y ,  zm; x, z m  .. . Ix, Z&): y. Z,( t ) ) ,  = (y ,  z,: x, ZJ.. . Ix, z,: y.  Ze)o 

(v. 0; x, Ol~:(Zc)D~(Za). . . D.(Zg)Dc(Zc)l%. 0; y, 0). (21) 
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Using (12) and (20) the following relations can be found 

D d Z d  = n D U ~ ( G O )  Dc(Zc) = n D,, (hzJ  (22) 

which bring (21) into the form 

L..) = (Y ~ O ; X , O I ~ D ~ ~ U , Z , ~ D ~ ~ V , Z , ~ . . . ~ D ~ ~ ~ V , Z , ~ D ~ ~ ~ U , Z , ~ I X , O : Y , O ~ .  (3) 
Y Y 

With this understanding of the average we are now in a position to analytically evaluate 
the exciton quadrature variances q,(t). First, using (6), (3), (12) and (18) we express the 
two variances qv(t) in terms of the Bogolubov transformation functions and the polariton 
operators as 

At the last step, we put (18) into (25) and use (U), (26) and (27)  to evaluate X i c @ ) .  With 
some trigonometric manipulations, we have obtained the following formulae (for simplicity 
Z. and Zc are assumed here to be real): 

X i c  = (-1)”&& sinl[Pg + (Ftc + F t p ) / 2 V l 4 s M ( F ~ ~  + Fc~)/2Vltl 

s, = U&+ U,& zo = z,/v 2, = Z, /V 

(28) 

where the notations involved are 

= + Py + S:(FM + Ffp + Fp, + Ftp) .  (29) 
P 

Substituting (28) into (24) gives the final, fully analytic expressions determining the exciton 
quadrature variances q.(f). Apart from the secular approximation, the derived expressions 
for qdt)  are exact and look most compact (for comparison see 1331 and 1131). 
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4 Analysis of exciton squeezing over the parameter space 

In this section the analytically derived formulae for the exciton quadrature variances, (24) 
with X i c  given by (28), will be graphically analysed over the relevant parameter space. 
There are two kinds of parameter: one is tunable and the other is dependent on a specific 
material whose properties will be determined experimentally. We call the former external 
and the latter intemal. In reality, any physical effect depends simultaneously on a number of 
parameters, both extemal and intemal. Furthermore, a change in one parameter might cause 
changes in other parameters, i.e. a parameter might be a function of many other parameters. 
All this makes an analysis over the parameter space not often an easy task. Here we shall 
carry out the analysis purely from a theoretician’s point of view. That is, we assume that 
each parameter is an independent variable and only one or two parameters vary at a time 
while all the others are fixed. In the problem considered here, the extemal parameters are 
the photon frequency w, the initial degree Z., Z, of coherence of the system and the size 
V of the experimental sample. Instead of the first two parameters we can equivalently 
consider the scaled frequency w / E  and the degree z, = Z,/ V ,  z, = Z,/ V of coherence 
per unit volume. To the internal parameters belong E ,  g, f and I ,  which explicitly enter 
the model Hamiltonian (1). To be specific for the intemal parameters let us choose GaAs 
as an example. Its parameters’ values are provided in section 2. 

In figure 2 we analyse the dependence of q. = q.(t) of GaAs on w / E ,  which is altered 
from 0.6 to 1. The other two extemal parameters are fixed as za = z, = 1 x lb and 
V = 1 x lo-’’ an3. Figure 2(u) for 41 and (b) (under a different angle of 3D view) for 42 
displays negative peaks corresponding to the occurrence of exciton squeeziog. The peaks are 
quite shallow (weak squeezing) for off-resonance frequencies w / E  Q 0.6 and become deeper 
(stronger squeezing) for w / E  approaching unity. The strongest squeezing is achieved for the 
perfect resonance detuning w = E (i.e. w / E  = 1) as clearly seen from figure 2. Figure 3(u) 
shows the time variation of 4” in dependence onn E z, = z, = 0+1000 cmU3 and w / E  = 1, 
V = 1 x lo-’’ cm3. The message from figure 3(u) is that the greater the initial coherence 
degree n the stronger the exciton squeezing. The peaks of 41 and qz alternate in time 
exhibiting the fact that the two quadralure components can by no means be simultaneously 
reduced under the coherence-state values; otherwise, the Heisenberg uncertainty relations 
would be violated. The peaking altemation is most apparent in figure 3(b), where we plot 
2D graphs for qu = q , ( E i ,  V )  with perfect resonance detuning and z, = z, = 1 x lo3 
41 curves are dashed whereas q2 ones are solid. Curves with smaller oscillation amplitudes 
(weaker squeezing) corresponds to larger volumes V which are chosen to be equal to 1, 
2, 5, IO and 50 x cm3. At t = 0 both q, and q2 are ‘coherent’. Then 4, becomes 
‘squeezed‘ but 92 ‘expanded’. At some later moment of time they both retum to coherent 
states; after that 41 huns  out to be ‘expanded’ but 42 ‘squeezed‘, and so forth. At no 
moment of time are both 41 and q 2  found as ‘squeezed‘, thus defending the Heisenberg 
inequality. 

To analyse exciton squeezing over the intemal parameter space we reduce the number of 
parameters by one by considering the scaled quantities g / E ,  f / E  and 1/E. For convenience 
we reduce further the number of parameters by anticipating that f / E  = I / E  = L x lo-”. 
From the parameters’ values given in section 2 for two typical semiconductors GaAs and 
CdS we can change Igl /E from 0 to 0.05 and L from 0 to 100 cm3. To follow how exciton 
squeezing varies over l g l /E  and L it is best to take moments of time corresponding to 
negative peaks. Two such moments, as can be seen from figure 3{b), are at Et = 13.3 and 
Et  = 15. Figure 4(a) shows q1 (lower ‘squeezed‘ grid) and 42 (upper ‘expanded’ grid) in 
the space of L and E / g  at Et = 13.3 and for w / E  = 0.9, z, = z, = 1 x 1b c n r 3  and 
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b 

Figure 2. GaAs time-varying exciton quadrature variances 91 I qL ( U )  and 92 = q2 (b) versus 
scaled photon frequency w / E .  r. = &. = 1 x IC? cm'), V = 1 x cm3. Negative peak; 
signal the occurrence of exciton squeezing. 

V = 1 x cm3. Figure 4(b) is the same as figure 4(u) except that Et  = 1 5  here 
however the lower 'squeezed' (upper 'expanded') grid represents qz(q]) !  From figure 4(u) 
and (b) we l a m  that if either g / E  = 0 or L = 0 no exciton squeezing can occur: the two 
grids coincide at the line 41.2 = 0, g / E  = 0 and the line q1,2 = 0, L = 0. This result 
is physically understandable: being optically excited and non-linear in nature, squeezed 
excitons could not be generated if the light-matter interaction is turned off (g = 0) and/or 
no non-lineanties are included ( L  = 0). Therefore, the necessary conditions for excitons 
to be squeezed are simultaneous g # 0 and L # 0 (i.e. f and/or I # 0). It is interesting 
to note here that this can immediately be gathered in an analytic way from (28). Indeed, if 
g = 0 (L = f = I = 0) then U, = 0 as follows from (7) (the parentheses in (15) are equal 
to zeros). Once U, = O  (the parentheses in (15) are equal to zeros) all the F g  in (15) also 
vanish making the second sinusoidal function in (28) zero, too. This yields X;t(t) = 0, i.e. 
qv = 0 all the time, which in tum means the absence of exciton squeezing. Figure 4(u) and 
(b)  signals a better exciton squeezing for materials with larger interactions. Summing up 
the analysis results we would conclude that it is possible to produce squeezed excitons in a 
small-volume semiconductor with large interactions (g, f and/or 1 )  pumped by a coherent 
light of frequency close to the exciton level. 
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(b) versus V: w l E  = 1 and z, = zc = 1 x lo’ an-3. q1 c w e s  are broken, 92 ones are full. 
Smaller-oscillation amplitudes correspond to V = 1.2 5, 10 and 50 x an3, respectively. 

5. Discussion 

We now discuss three points. The first concems the validity of the model Hamiltonian 
used (1). This Hamiltonian can be rigorously derived from the original photon-electron- 
hole picture by mapping onto a hypothetical bosonic space with the aid, e.g., of Usui’s 
transformations [34] (see [23] and [24]). This and the expressions (2)  are correct as far as 
the exciton density px satisfies the condition [23,241 26irr:pZ/3 < I .  Taking r, = SO 8, 
as in wica l  semiconductors, px must be much less than 2.9 x 10’’ cm-;. In our coherent 
system the quantity equivalent to exciton density is z,. Since in our numerical calculations 
we took z, as small as z, = 0 i 10; an-;, the validity of the working Hamiltonian (1) is 
surely justified. 

The second point to be discussed regards the size dependence. From figure 3(b) it 
follows that the effect of exciton squeezing should not manifest itself in large-volume 
samples. We analysed V of about some or some tens of lo-’’ cm3. Suppose the sample 
is a sphere of radius R. The analysed values of V give R N lo3 8, 2: 20rx. These are 
intermediate between bulk samples and microcrystallites [35]. The dependence of statistical 
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I 

Q 

Figure 4. Excilon qdrafure variances qs in thc panmetcr space of L (for L see lexl) and g l E  
(note ha1 g / E  in ihe figure Should be read U ig / E ) .  w / E  = 0.9 md V = I Y em'. (a) 
Er = 13.3. The upper (lower) grid is for q2 (qi). (b) Er = 15. The upper (louer) grid is for 
91 (a). 

properties on the volume in cjstals of such intermediate sizes is reported in [lo] and [ll], 
whereas several physical phenomena were predicted to be enhanced in microcjstallites due 
to the knite-sjze effect [36]. merefore, the above-reported exciton squeezing effect is also 
hoped to be enhanced in small quantum samples. To confirm this, however, needs further 
investigations because in such quantum microcrystallites k, 8 ,  f and 1 in (1) require highly 
complicated evaluations, which are difficult even numerically (for instance see an effective 
Hamiltonian for large microcrystallites in [37]). 

Coming to the end we wish to say some words about how to 'detect' squeezed excitons. 
Discussions on experimentally detecting the squeezed polariton structure were given in [9]. 
Yet, polaritons as well as excitons are intracrystal elementary excitations, and no devices can 
be put inside a sample to directly detect them in a squeezed state. One may only indirectly 
check them outside the experimental sample through specific effects that are consequences 
of their squeezing. As shown in (121, in a lightmatter coupled system excitons and photons 
are. able to transfer their statistical properties from one to another. Squeezed behaviour of 
excitons should therefore be transferred to intracrystal photons and vice versa. Since photons 
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propagate through and leave the sample, they can be detected outside the sample. Hence, 
an observation of squeezed photons behind a semiconductor sample could serve as possible 
evidence of the presence of squeezed excitons inside the semiconductor. In fact, in the 
spectral region near the semiconductor band edge, exciton squeezing and photon squeezing 
ire two closely connected problems. In a simildr fashion, photon squeezing bia an excitonic 
non-linearity his recenily been treated in [38]. In sep&e researcii we wiil establish and 
clarify the relationship between squeezed states of excitons, photons and polaritons inside 
a semiconductor. 

Finally, we wish io recall hat the results obtained in this paper were b k d  on a very 
strong idealization of real systems in writing the effective Hamiltonian (1): More redistic 
models are worth investigating but involve rather complicated theoretical evaldations, which 
we hope will not change the qualitative picture: 
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